NASA Contractor Report 4715

Aeroacoustic Analysis of Turbotfan
Noise Generation

Harold D. Meyer and Edmane Envia

CONTRACT NAS3-26618 and NAS3-27186
MARCH 1996

National Aeronautics and
Space Administration






NASA Contractor Report 4715

Aeroacoustic Analysis of Turbofan
Noise Generation

Harold D. Meyer

United Technologies Corporation
Hamilton Standard Division
Windsor Locks, Connecticut

and

Edmane Envia
NYMA, Inc.
Brook Park, Ohio

Prepared for
Lewis Research Center
under Contract NAS3-26618 and NAS3-27186

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1996



TABLE OF CONTENTS

Page

LIST OF SYMBOLS oottt ettt et teesencaaareseaeeasaseeanaansnneannns iv
LIST OF FIGURES .. oottt e e ettt et ettt aateaeaaaanesacananannnnnn viii
QUMM A RY oot et e e e e e e e e e e e et e e ix
CHAPTER 1: INTRODUCTION ittt aeee e eaaaasancanannnasaasnnns 1
1.1 Background ......c.ouiuiiiiitii e 1

1.2 VeI VIEW - vt o e e e e e e e ee e e e e e et e ee e e e ateaaeeaesasessasaascaraacaeaanneenans 2
CHAPTER 2: GEOMETRY OF DUCT, ROTOR AND STATOR ..................... 7
CHAPTER 3: MEAN ROTOR WAKE ... .ottt iaea et i eeaiiaanaannnaas 12
3.1 Rotor Wake Model . ..ot i et a et iateeaeaeeeeansaeananannnaanas 12

3.2 Stator Upwash Velocity ....c..ooieiinimiiii i 16

3.3 Loading on Stator VANES ...........ovieiriratneninioniioiiiitaiieinannns 18
CHAPTER 4: DUCT ACOUSTICS .ottt et e et e e e eaa i enanaaaaannn 21
4.1 Normal Modes in an Annular Duct ...t 21

4.2 Duct Acoustic Modes ...ttt ot e ettt et it aaecaaaaeesaaaaaaaras 25

4.3 SOURA POWET . vevn et et et et e et ettt e e aac e eataaeaaaanaennnnnenans 31
CHAPTER 5: NON-DIMENSIONAL RESULTS ..o iiieiieaaans 32
5.1 Pressure Amplitude ........ovoiuiiiiii i 32

5.2 SOUNA POWET . v ettt e e e et e ettt et e et e eae e ceteaastaaaaeananannan 35
CHAPTER 6: CONCLUDING REMARKS ..o e e iie e ciieeeiieeeaens 37

-1 -



APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

KERNEL FUNCTION FOR A LINEAR CASCADE
IN SUBSONIC FLOW .. i e 38

NUMERICAL COMPUTATION OF THE NORMAL MODES
IN AN ANNULAR DUCT ... 48

SOUND POWER FLUX ... it iieeeeeeae e 50

FILON’S INTEGRATION RULE ... 54

NUMERICAL SOLUTION OF THE INTEGRAL EQUATION

FOR THE VANE LOADING ... it 56
REFERENCES ... i e ettt it ae e aaa e eenes 59
ACKNOWLEDGEMENT S ... ettt es 61

- iii -



LIST OF SYMBOLS

Aring sereee e duct mode amplitude

B o rotor blade count

P vane semi-chord

by e vane semi-chord at the tip

D e b/2b,.

Crns(Z) coeeieiii chordwise integral of elemental vane loading

é=(cosag,—sinag) ............ unit vector along vane chord

7 SR medium nominal speed of sound

D=(D1,D2) eeeveneneaannnnn.. blade trailing edge to vane leading edge
distance in (X, X2) coordinates

Bl e unit vector along X; (ie., axial direction)

€0 et unit vector along Xo (i.e., azimuthal direction

F=fsiny ......oooooiiiiiii. “reduced” (non-singular) elemental vane loading
function

S elemental vane loading function

7 sth Fourier harmonic of f

(& 62 7) R Green'’s function

H blade spacing

Hy oo chordwise component of H

Hy oo transverse component of H

AP vane spacing

£ chordwise component of h

£ transverse component of h

Jod o e axial component of acoustic energy flux vector

< lag > e acoustic intensity (i.e., time-averaged I,;)

B e v—-1

Im(s) oo mth order Bessel function of the first kind

K oo reduced frequency

Ko(t) ceviiiiiiaiiiin cascade kernel function

—iv -



chordwise gust wavenumber

axial wavenumber of duct mode relative to the flow
kmnsTp

duct uniform axial velocity Mach number (used for
acoustic calculations)

Mach number of stator relative flow

rotor blade tip rotational Mach number
circumferential wavenumber of acoustic duct mode
unit normal to blade (mean) surface

unit outward normal to vane surface

unit normal to vane (mean) surface

duct radial mode index

acoustic pressure

complex harmonic duct mode pressure amplitude
Fourier transform of p

sth Fourier harmonic of p

ps on the vane upper surface

ps on the vane lower surface

radial coordinate

duct outer radius

duct inner radius

vane surface (both upper and lower)

vane mean surface

mean surface of reference vane

BPF harmonic index

time variable

velocity relative to the stator

duct uniform axial velocity (used for acoustic
calculations)

acoustic axial velocity

vane count



W= (W1, Wa) e, wake velocity downstream of the rotor

W oo e Fourier coefficient of W

77 S unit vector along 174

W= (W1, W2) seerrueirnanenennnnn. stator upwash

Wy wveeenemseeneeeasaesannnannns Fourier coefficient of w

W veveneennennneeeeaneaaeeaennns we /U,

X=(X1,X2) ceverreiiianaanan... 2-D coordinate system fixed to the rotor trailing
edge (cartesian system)

Xn = Bmn Tp ceeeceeencnennenn. duct mode radial eigenvalue (non-dimensional)

T=(T1,29,%3) +eveeurrancanaenn. coordinate system fixed to the stator leading edge

(cartesian system)
S (3% 21 coordinate system fixed to the stator leading edge

(cylindrical polar system)

2 r/r, (Chapter 5 only)

O axial displacement of vane leading edge

Ty eeneineneai it zs,/2b,

Tgop veeerororoneaiaaaaaen Topac/2bs

T gpaq wrvevernmneannnesensaneannns blade trailing edge to vane leading edge axial
distance

Y (s) oo mth order Bessel function of the second kind

T=(Y1,Y2,Y38) cevoveevrrnneneannn. source coordinates (cartesian)

T=(0" ¢ y1) oo integration point (cylindrical)

YRD wevvrrerrrea s azimuthal displacement of rotor trailing edge

Yp weeememenanaeatananaeaaaaan, Yro/2b,

Yop vovrrrmnrnceneanneeieaaananns azimuthal displacement of vane leading edge

Yg wveeeemnenn s Ysp/2by

2 chordwise coordinate along the vane

O e e Fourier transform variable (for ;)

QUi eeenerenenneen e blade relative velocity flow angle

Qg ittt vane stagger angle

P 1- M2

_vi_



Br e 1— M2

-

m(r? —r%) (Chapter 4)

o — abh, — Kh; /M, (Appendix A)

AP I' — 2nm (Appendix A)

P axial wavenumber of duct mode in stator-fixed frame

Vinms - YmnsTp

Aps=p; —p& vane unsteady loading

APy oo unsteady loading on the vth vane

APus oo sth Fourier coefficient of Ap,

O z/b chordwise transformed variable (collocation point)

Koy e e v e eeee e duct mode radial eigenvalue (dimensional)

A e wavenumber in the Fourier transformed plane
(Appendix A)

U e vane index

PO - eeremae i nominal fluid density

o inter-blade phase angle

P 2b. /Ty

7 /"o

p=tan"tT ...l polar (angle) coordinate

Xp - v vvvvone e period used in definition of Fourier series

U et chordwise transformed variable (integration point)

Um(Bmn T) ceeeeeeaiia e duct radial mode

(O fan rotational speed

- vil —



LIST OF FIGURES

Page

Figure 2.1. Sketch of Rotor/Stator Combination. ................ocoiiiiiiiiiion... 8

Figure 2.2. Blade and Vane Geometry. .............coooiuiiiiiiiiiiiiaieiinaanenan.. 9

Figure 2.3. Rotor/Stator “Unrolled” Geometry. .............cciiiiiiiiiiaiiiennon.. 11
Figure 3.1. Rotor/Stator Geometry for Mean Wake Analysis

Shown at Time ¢ = 0. ...ttt ittt e et ieaaiaaaieeenns 13

Figure 4.1. Stator Geometry for Acoustic Mode Analysis. ..................ooiiie. 27

Figure A.1. Stator Cascade Geometry. ..........ooiuiiiiiiiiiiioiiiinniaanienenans 39

Figure A.2. Integration Contour for Eq. (A.30). ..o, 45

- viii —



SUMMARY

This report provides an updated version of analytical documentation for the vo72
Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations
used in the code and, where necessary, it documents the enhancements and changes made

to the original code since its first release.

V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic
modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated
by the stator vanes interacting with the mean wakes of the rotor blades. In this updated
version, only the tonal noise produced at the blade passing frequency and its harmonics, is
described. The broadband noise component analysis, which was part of the original report,
is not included here. The code provides outputs of modal pressure and power amplitudes

generated by the rotor-wake/stator interaction.

The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber
and thickness enclosed within an infinite hard-walled annular duct. The acoustic pressure
within the duct is calculated by distributing pressure dipoles on the surface of the stator
vanes and calculating the pressure at an arbitrary point within the duct via the normal
mode expansion of the Green's function for an annular duct. By this procedure one obtains
an infinite series for the sound pressure within the duct. Each term contains a normal mode
of the duct multiplied by the amplitude of that mode. The amplitude of each propagating
mode is computed and summed, with appropriate factors, to obtain the harmonics of sound
power flux within the duct. These calculations are carried through for both upstream and

downstream propagating modes.

No assumptions regarding the ratio of the wavelength of the sound generated to the
vane chord are required. However, to simplify the computation of the dipole distribution
generated by a given periodic inflow variation, the so-called strip theory approximation is
employed. Specifically, the dipole distribution is computed by deleting, from the convected
wave equation, all terms containing derivatives with respect to radius, but retaining the
radius as a parameter in the boundary conditions (which derive from the vane geometry

and the incident fluid flow). At each radius, therefore, the equations to be solved are
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those for a linear cascade in subsonic flow. Although radial derivatives are deleted from
the wave equation in calculating the chordwise pressure distribution on the vanes, radial
variations in the amplitude and phase of the pressure distribution are taken into account in

integrating over the vane surface to obtain the amplitudes of the propagating duct modes.

The wake flow downstream of the rotor is modeled as a small amplitude disturbance
flow, superimposed upon a steady mean flow. The mean part of the flow is assumed to
have no radial component, so that the mean flow stream surfaces are cylindrical. It is
further assumed that if one of these cylinders is unwrapped to form a plane, the mean flow
streamlines will be parallel. This is equivalent to ignoring viscous diffusion in the rotor
wakes, a justifiable approximation as regards the calculation of the forces on the stator
vanes, provided that the wake thickness chosen is that which is obtained at the axial station
of the stator vanes themselves. The magnitude of the wake flow velocity is constant on
lines parallel to the mean flow streamlines, but varies periodically in the direction normal

to the mean flow streamlines.



CHAPTER 1

INTRODUCTION

1.1 Background

This report is a revision of the original analytical documentation for a rotor-wake/ sta-
tor interaction computer code described in NASA contractor report, CR-167952. The code,
which was originally developed under contract to NASA by Bolt Beranek and Newman
Inc., was later revised and integrated into a fan noise prediction system by Pratt & Whit-
ney and renamed the V072 code. This report replaces Volume 1 of the original two-volume

2

documentation authored by Ventres et al.! Volume 2, “Computer Programs,” of the same
set? is superseded by a revised technical documentation and user’s manual written by
Topol and Mathews.® The current revision, while primarily a mathematical treatment,
should also enable a diligent reader to trace through the actual computer code without the

need for the old Volume 2.

This revision was necessary for several reasons. First, and most important, because
the original documentation preceded the actual release of the computer program, it did
not reflect many of the changes to the code. In particular, the geometry used for the code,
and, as a consequence, the resulting coded formulae, are different from those described in
the old Volume 1. Second, the original report covered, in addition to discrete-tone noise
sources produced by mean rotor wakes, broadband noise sources due to turbulent rotor
wakes. These broadband noise capabilities are included in other codes but are not part of
the V072 computer program. Finally, there have been several undocumented corrections

and enhancements to the code since it was first released.

Outside of the changes described above, most of the material in this revision has been
borrowed intact from the original documentation, although some of it has been rearranged
to improve the flow of the text. Where necessary, complete sections have been deleted
from the material. These include all of the discussion on broadband noise sources which,
as mentioned earlier, is not included in the computer program. These sections cover
modeling of the rotor turbulent wakes and their attendant acoustic response computations

(i.e., broadband noise spectrum and acoustic power). Therefore, with no further need for
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a general frequency treatment, all of the material in this revision is rewritten in terms of

discrete harmonics of the rotor blade passing frequency.

1.2 Overview

Given a description of the rotor and stator geometries and their operating conditions,
the Vo072 code calculates the modal content of the acoustic fields set up inside the inlet
and exhaust ducts of a turbofan by the actions of unsteady vortical velocity fluctuations
convected past the stator vanes. The results from this code, supplemented by mathematical
models of the impedance of the inlet and exhaust terminations, or coupled with stand-

4 can be used to calculate

alone radiation codes such as the one developed by Eversman,
the farfield noise. The program can also be used to provide the initial conditions required
for the investigation of duct liners, particularly liners tailored to suppress a specific mode

or set of modes.

In the context of discrete rotor/stator interaction noise, the fluctuating velocity field,
i.e., vortical flow, is caused by the periodic wakes of the upstream blade row of a fan
operating in front of an outlet guide vane. The fluctuations are assumed to be small
enough so as to be convected by the mean flow. When these velocity fluctuations are
carried past the rigid surface of a stator vane, the requirement of flow tangency sets up
acoustic pressure fluctuations, which propagate upstream and downstream in the duct,

and are perceived as noise.

The acoustic pressure in the duct can be calculated in a straightforward manner using
the Green’s function for the duct, provided that the pressure distributions on the surface
of the stator vanes are known. If the Green’s function is expressed as an infinite series
of the normal modes of the duct, the modal amplitudes of the acoustic pressure field
are obtained directly. The problem remaining, therefore, is to determine the pressure
distributions on the surface of the stator vanes generated by the convected vortical flow.
This is accomplished by modeling the vanes as surfaces of zero thickness and camber,
which support an unknown but continuous distribution of pressure dipoles. The normal
velocity on the vanes induced by the unknown dipole distribution is then required to
nullify the normal component of the vortical disturbance velocity so that the total fluid

velocity conforms to the shape of the blades. The result is an integral equation for the
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dipole distribution, which, depending upon the approximations introduced, may admit an

analytic solution, or may require numerical treatment.

The approximations required to arrive at an analytic solution are considerable; es-
sentially they ignore the annular or circular geometry of the fan, or stator, the three-
dimensionality of the disturbance, the interaction between the blades, and the compress-
ibility of the fluid. What remains is incompressible flow around an isolated airfoil in two
dimensions, the solution of which, for a sinusoidal vortical gust, is known as the Sears func-
tion. This was the approach used by Kemp and Sears®® in their original investigations
of the interactions between blade rows in axial flow turbomachinery. The incompressible
approximation has since been shown to be unacceptable. For example, Fleeter” found that
compressibility can change the pressure values on the rotor or stator by as much as a factor
of two, while Kaji® calculated even greater changes (20 dB; a factor of 10) in the sound

pressure level upstream of the blade row due to source non-compactness.

At the opposite extreme, as regards complexity, are calculations carried out by Koba-
yashi® and Kobayashi and Groeneweg!'?, using equations derived by Namba!l'? for an
annular blade row in compressible flow. Because of the annular geometry, the kernel
function, which relates the dipole distribution to the velocity normal to the blades, is elab-
orate in form and time-consuming to compute. The associated integral equation is two-
dimensional (i.e., both the spanwise and chordwise distributions of pressure dipoles must
be determined). In his numerical work, Kobayashi made comparisons between “exact”
aerodynamic theory and various approximate methods of calculating the normal compo-
nent of the induced velocity. One of these, which he called the “quasi-three-dimensional”
approximation, coincides with what most would call a “strip theory” approximation. In
calculating the induced velocity, derivatives with respect to radius are deleted from the
convected wave equation, so that one is left with the kernel function of a linear cascade in
unsteady compressible flow. The particular geometry of the cascade, as well as the vor-
tical inflow velocity, depend on the radius, and this parametric dependence is retained in
calculating the induced velocity and, hence, ultimately the dipole distribution. The effects
of radial or spanwise variations in the amplitude and phase of the vortical disturbance
velocity, as well as radial variations in blade chord, inter-blade gap, and stagger angle,

are thereby taken into account, even if in an approximate manner. Kobayashi found that
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this procedure introduced errors no greater than 2 dB in the computed magnitudes of the
acoustic modes set up in the duct upstream and downstream of the rotor. Furthermore
the strip theory approximation, as described above, is considerably easier than the “exact”
method to implement numerically. For these reasons, this approximation was selected for

use in the V072 program.

Laksminarayana et al.}3~!5 have collected an extensive set of measurements of the
mean and fluctuating components of the flow downstream of a multi-bladed fan operating
at subsonic tip speed, using a transducer rotating at the same rate as the fan. Their
measurements of the mean, or time-averaged, component of the flow at locations remote
from the blade hub or tip indicate that the radial velocity immediately downstream of
the fan blade trailing edges is substantial, but that this velocity decays rapidly, so that
at distances greater than about one-half blade chord downstream the circumferential and
axial components of the mean velocity predominate. Measurements of the velocity defect
profile for each fan blade show marked asymmetry about the streamlines on which the
minimum velocity occurs, but this asymmetry also disappears within a half-chord length
downstream of the fan blade trailing edges. At greater distances, the normalized velocity
defect profiles all show a Gaussian distribution.* Due to the diffusion of momentum in the
flow, the widths of the velocity defect profiles increase with downstream distance, while the
maximum velocity defect decreases. But for the purpose of calculating the noise radiated
by the stator, it is sufficient to model the wake flow in the vicinity of the stator. This can
be done by ignoring momentum diffusion between the fan and stator, provided that the
wake thickness and velocity defect are assigned the values they attain in the vicinity of the

stator, say at the leading edges of the stator vanes.

With these approximations, the mean flow streamlines downstream of the fan become
a series of parallel lines, as viewed on a cylindrical surface opened out to form a plane.
On this plane the velocity defect profile of each rotor blade is assumed to be a Gaussian

wake profile, with wake width and maximum velocity defect left as parameters to be

* Since the original version of the code was released, hyperbolic!® and loaded rotor!?
wake profiles, which are more representative of modern fans, have also been added. The
loaded rotor model, in particular, indicates that asymmetric profiles may have a non-

negligible influence on the predicted noise levels.

—4-



specified. When viewed in a stationary frame of reference fixed to the stator, the pattern,
which is spatially periodic, becomes a temporally periodic fluctuation which can most
conveniently be expressed in terms of a Fourier series for the purpose of calculating the
inflow disturbances normal to the stator vanes. Further details of the implementation of

the wake model in the code will be given in Chapter 3.

One additional aspect of the mean wake geometry is noteworthy. At each radius the
mean flow streamlines all bear the same angle to the centerline of the duct, but this angle
is a function of the radius, the precise nature of which depends upon the radial variation
of the rotor loading. The locus of centerlines of any given wake form a surface whose shape
depends upon the radial variation of the wake angle; this surface will normally intersect
any selected stator vane at only one point, and this point will move along the leading edge
of the stator vane as the fan rotates. If the gap between the fan and stator is large, each
stator vane will at any given instant intersect many rotor blade wakes, and, for each wake
intersected, there will be two changes in the sign of the disturbance velocity seen by the
stator vane. The pressure induced on the stator vane will have as many sign reversals as
the inflow velocity, and will tend to excite duct acoustic modes with that same number of
radial nodes. If, at the frequency of interest (which, of course, must be the blade passage
frequency or one of its harmonics), few or none of the duct modes with that number of
radial nodes propagate in the duct, the stator will not, at that frequency, be an effective
generator of sound. The significance of this wake roll-up phenomenon in the generation
of sound by the stator was pointed out previously by Bliss, et al.!® In their discussion,
they chose to emphasize the radial trace velocity of the vane/wake intercept instead of
the number of nodes in the normal component of the inflow velocity. Their criterion for
efficient sound generation, namely that the trace velocity of the points of intersection of
the wake centerlines with the stator vanes be supersonic, is perhaps more appropriate to
an unshrouded rotor/stator combination, but the two criteria are roughly equivalent when
the ratio of hub and tip radii is close to one, and are exactly equivalent for a set of two

linear cascades in relative motion between two infinite parallel planes.

In the equations derived in this report, and in the computer program developed from
them, the radial variation of the angle between the mean wake streamlines and the duct

centerline may be specified arbitrarily, so that the effects of wake roll-up are properly taken
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into account.

One element of the program, which was absent in the original version, is a model for
rotor hub and tip vortex flowfields. The details of the model may be found in Ref. 16,
where measured rotor flow data were used to develop empirical relations for the vortex
flowfield. While the model may not be sufficiently robust to allow for realistic calculations
of the vortex noise contribution, it does enable one to perform a parametric assessment of

the potential impact of a tip, or hub, vortex on the rotor/stator interaction noise.

The remainder of the report is organized as follows. Pertinent aspects of the duct,
rotor and stator geometries are discussed in Chapter 2. Mathematical models of the fan
blade mean wake and its hub and tip vortex flows, which together represent the rotor
gust upwash, are presented in Chapter 3. The chapter then concludes with a discussion
of the computation of the stator vane pressure distribution generated in response to the
gust upwash. An overview of the acoustics of annular ducts is given in Chapter 4, along
with a derivation of the amplitudes of the duct modes excited by stator vane pressure
distributions. The expression for the acoustic power in the duct is also presented. Chapter
5 presents key formulae for duct mode amplitudes and acoustic power derived in earlier
chapters in non-dimensional forms corresponding to those used in the code. Details on

cascade response and numerical methods are given in Appendices A through E.



CHAPTER 2

GEOMETRY OF DUCT, ROTOR AND STATOR

For our purposes, a turbofan is a rotor and stator combination mounted in an annular
duct of infinite length (i.e., reflection of acoustic waves from the ends of the duct are
ignored). A sketch of the rotor/stator combination is shown in Fig. 2.1. As shown in the
figure, a cylindrical polar coordinate system is established in the duct, with the polar axis
lying along the duct centerline. The axial coordinate x, increases in the direction of the
air flow, and the rotor rotates in the sense of increasing ¢ with fan rotational speed §2.
Note that the meaning for z1, T2 and z3 in subsequent figures is sometimes different from
that in Fig. 2.1. The outer radius of the duct is r,, and the inner radius is 7,. The rotor
has B identical evenly spaced blades and the stator has V identical evenly spaced vanes.
This is the same coordinate setup as used in Ref. 19, page 190, from which we later obtain

our Green’s function.

The rotor blades and stator vanes are modeled as twisted sheets of zero thickness and
camber, whose stagger and chord vary with the radius, . The axial and azimuthal sweep,
if any, of the stator vanes are defined by extending a radial line from the axis of rotation
through the leading edge point of the vane at the hub (radius r = 7). As shown in Fig.
2.2, the location of the leading edge point at any other radius r is defined by the two
parameters T, and y,, which give the displacements of this point from the radial line.
(s, = axial displacement of the stator vane leading edge, ys, = azimuthal displacement
of the stator vane leading edge.) Similarly, the azimuthal sweep of the rotor blades is
defined by extending a radial line from the axis of rotation through the trailing edge point
of the blade at the hub. The location of the trailing edge point at any other radius r is
defined by the parameter y,, which gives the displacement of this point from the radial
line. (yp, = azimuthal displacement of the rotor trailing edge.*) In general, z,,, ys, and

Ynp are functions of the radius, and by definition, T;, = Y5, = Yz, = 0 at the hub.

* No axial sweep parameter is used for the rotor. Instead a rotor/stator distance pa-
rameter, T, ,., which represents the axial distance between the rotor trailing edge and

the stator leading edge, accounts for any axial sweep that might exist.
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The intersections of the rotor blades and stator vanes with a cylindrical surface of
radius r is shown in Fig. 2.3. This is for the point in time where the rotor trailing edge
and stator leading edge are aligned azimuthally at the hub. The stagger angle of the vanes
is a. The spacing between the blades is 27/ B, and between the vanes, 27r/V. The local

semi-chord of the vanes is b which can be a function of r.
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CHAPTER 3

MEAN ROTOR WAKE

In this chapter, we provide information that will be needed for computing the acoustic
response discussed later in Chapter 4. Our basic geometry will be a constant-area annular
duct, through which a uniform flow is assumed. We shall describe a rotor wake model
from which we derive an expression for the wake velocity normal to the stator vanes; from
this expression we obtain the unsteady loading along the stator vanes. The loading will
then be used in Chapter 4 to derive an expression for the complex amplitudes of the duct
modes excited by the interaction of the rotor blade wakes with the stator vanes. These

amplitudes will in turn give us the power propagating up and down the duct.

3.1 Rotor Wake Model

The pressure distribution on the stator vanes can be calculated by dividing the stator
into a series of radial “strips” at constant radius and calculating the pressure on each
“strip” as though it were a linear cascade of thin flat plates. In this approximation, the
radial variation of the inflow to the vanes is ignored - - an application of “strip theory”
to stator aerodynamics. We are concerned here only with the mean value (time average
in rotor coordinates) of the rotor wakes, which, being time periodic in stator coordinates,

generate sound at harmonics of the blade passage frequency QB/2w.

Consider a cylinder of radius r, centered on the duct’s axis of symmetry. The inter-
section of this cylinder with the rotor and stator is depicted in Fig. 3.1. This surface is
the one viewed by looking down the positive z3-axis in Fig. 2.1 toward the origin. In
Fig. 3.1, two sets of coordinate axes are shown; axes (X, X) are fixed at the trailing edge
of the rotor, while axes (x;,x) are fixed at the leading edge of the stator. The azimuthal
coordinate, (r¢), is in the opposite direction to the z;-axis as indicated in the figure. Rotor
rotational speed, 72, -is in this same direction. The (1, z2)-coordinate system is defined at
each radius and places the leading-edge points of the stator vanes at the points (0, —vh),
where v is any integer and h = 277/V. As seen in the figure, v increases in the direction

of increasing 2 (decreasing ¢).
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The relation between the two sets of axes in Fig. 3.1 is

X =Z+ D+ Qrtéy, (3.1)

where € is the unit vector in the azimuthal direction and D= ﬁ(f") is the vector distance
from the trailing edge of a rotor blade to the leading edge of a stator vane. D is shown
for the case where, at t = 0, the trailing edge of the rotor is aligned azimuthally with the
leading edge of the stator at the hub (i.e., r = r,;). We will perform our initial analysis
based on this configuration. However, D actually is defined only to within an additive
vector r¢géy, where @g represents an arbitrary angle of rotation of the rotor. We shall

later indicate the effect of such a ¢g and assign it a particular value.

In Fig. 3.1, W, which we will call the wake velocity downstream of the rotor, represents
the entire air flow, including the mean flow, downstream of the rotor and in the rotor
reference frame. The parameter a; is the angle that the wake velocity W makes with

the X;-direction at the stator leading edge.

So as to arrive at a reasonably simple model of the rotor wake, which will be valid in
the vicinity of the stator vanes, it is convenient to introduce two plausible assumptions.

They are

1. no radial flow occurs, and

2. pressure gradients and turbulent and viscous diffusion can be neglected

over the chord of the stator.

A result of the second assumption is that the wakes do not change during convection
across the stator. The fluid velocity then has only two components, (W), W2) in (X, X2)

coordinates, and the equations of motion of the fluid reduce to

(W - V)W =0, (3.2)

V- (poW) =0, (33)
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where pg is the nominal fluid density. A parallel flow of the form

W=w(X . N)w, (3.4)

where N and @ are constant orthogonal unit vectors (see Fig. 3.1), is a solution to
these equations, and is the form we will assume for the wake. The velocity is everywhere
parallel to the unit vector @ = (cosa,,,sina.,), and is constant in magnitude on the
lines X - N = constant. The variation of the magnitude across the wakes is determined by

the as-yet-unspecified function W()—(. N )

In this report, our Fourier series are defined in terms of the pair

Fo0= > f,efmxix, (3.5)
S=—00
1 Xp/2
fom o / 00 e2misx/xe gy, (3.6)
p_Xp/2

where Y, is the period. Let H be the gap between rotor blades, measured azimuthally.
Now, W(}? N ) is periodic in the N direction, because all the wakes are assumed to be iden-
tical. The period here is the normal distance between wake centerlines, x, = H cosa,, .

W()? .N ) can therefore be written as a Fourier series, i.e.,
o0 ) .
W(X . N) — Z W, ez[sBX-N/(rcosaC:L)], (3'7)
§=—00

where we have substituted 27r/B for H. The unit vector N has components (—sina,,,

cosa,, ), so the Fourier series may also be cast in the following form,

o0
w=3% w, ei[sB(Xg—X1tanaC,L)/r], (3.8)

§=—00
which indicates that the rotor wake velocity is periodic in the azimuthal direction also (as

well as the direction normal to the wakes). The azimuthal period is, of course, 2n7/B.

In principle, the Fourier coefficients W, of the wake flow could be determined ex-
perimentally by processing a sufficient number of flow measurements collected from a

transducer mounted behind the rotor. If only the first few harmonics of the blade passage
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frequency are of interest (it will transpire that the sth harmonic in the wake flow interacts
with the stator to generate sound in the sth harmonic of the blade passage frequency),
this is a feasible proposition. However, by assuming an explicit (and plausible) form for
the wake velocity profile, it is possible instead to characterize the wake velocity profile
semi-empirically by using experimental data to estimate the unknown parameters which
appear in these forms. In practice, this data is taken at the stator leading edge; however,
it must be referenced back to the rotor trailing edge to be appropriate for Eq. (3.7). In
defining the W,’s using Eq. (3.6), note that x is zero at the wake centerline for vo72.*

There are presently three wake velocity profiles to choose from in Vo72: (i) Hyperbolic
Secant, (ii) Gaussian, and (iii) Loaded Rotor 67. Three types of wake width and velocity
correlations are available for use with these profiles: (i) Loaded Fan Wake Function and
two types of (ii) Linear Rational Functions. These options will not be discussed here. For
information regarding the wake profile and correlation treatment, the reader is referred
to Refs. 16 and 17. In addition to wakes, the current version of V072 now also contains
models for hub and tip vortex flows. These empirical vortex models, which were not
part of the original code, were added later to provide a more complete representation of
the flow field downstream of the fan. In their current form, however, the vortex models
are intended, primarily, as a tool for providing crude estimates of the contribution of
vortex flow to the rotor/stator interaction noise. As such, they should only be used in
parametric assessments of hub and/or tip vortex noise contributions, not as design tools.
When selected, these vortex models are combined with the wake profiles so that both are
used in determining the W,’s multiplied by an additional factor sin(ag + a,). This is
the quantity that appears later in Eq. (3.18). These vortex models are discussed in
Ref. 16.

3.2 Stator Upwash Velocity

We next determine the component of wake upwash velocity perpendicular to the sta-

tor vanes, using the combined wake/vortex profile in rotor-fixed coordinates at the rotor

* This is not the case for Ref. 16, where, with the notation here, x would be x,/2 at
.the wake centerline. This means that the W,’s used in vo072 differ from those defined in

Ref. 16 by a factor of exp(ism).
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trailing edge, as given by Eq. (3.8). This upwash is specified in terms of its Fourier series

harmonics by using a coordinate transformation to stator-fixed coordinates.

We first calculate the wake velocity relative to the stator vanes,

U =W —Qré (3.9)
and then find the component w of this velocity that is normal to the vanes,

—

w="U, n, (3.10)

where 7 is the unit surface normal. Evaluating Eq. (3.10) using Eqgs. (3.8), (3.9) and the

coordinate transformation (3.1), we find that

oo
w=— Y W, sinfa, +a,) e8P Primmec)/]
=0 (3.11)

X e—i[sB(a:g-:cl tana. )/m + sBQt]
where the W,’s are the same as before, except that for s = 0, the Qr part of Eq. (3.9)

would be needed in evaluating Wy.*

On any specific vane, say vane v, the components of £ = (z1,x2), can be found from

& = zé+ vh + bé, (3.12)

where é = (cos o, —sin ) is a unit vector directed along the vane chords, and k= (0,h)
is the vector separation between any two neighboring vanes. The coordinate z is equal to
—b at the vane leading edges and to +b at the trailing edges. In terms of components,

Eq. (3.12) can be written as

1= (z+b)cosay, (3.13)
zg = —(z + b)sina, + 2mvr/V. (3.14)

* Note, however, that the s = 0 case is not relevant to the work here since it represents

the steady part of the vane loading.
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Also, substitute for D, and D; the relations

Dy = Zspp0; (3.15)
D, = Yrp t Ysp: (3'16)

which are easily obtained using Fig. 3.1. Then, Eq. (3.11) gives the result

o0 .
w=— Z w, e-i [k,z—21rusB/V—sBQt] (3.17)
s=—o0

where
we = —W, sin(ag + acy) et ["B (Yrpt+¥sp—*spac ta“"‘c:z,)/"] ( )
3.18

x ei[st (sinag+cosag tanQCL)/r] ’
and

ks =

B
f;— (sinag + cosag tana,,). (3.19)

In these equations, the parameters Wy, a, 0., , Yrp) Yspr Tspac, and b are all functions

of the radius r.

Note that, had Din Eq. (3.1) included the additive vector r¢oéz, we would now
multiply the right-hand side of Eq. (3.18) by a factor of exp(—isB¢o). This vector,

G0 = —Tspaoy taD Oy /7, is used in VO72. Therefore, Eq. (3.18) becomes
w, = —W, sin(ag +a_,) e_i["B (Yrp+Ysp—Tspac taBacLtTspac,y tan acn,u)/r] ( )
3.20
x ei[st(sinas-i-cosas tanaCL)/r]
3

where the subscript H in Eq. (3.20) refers to the stator leading edge location at the hub.
Thus the phase in the circumferential direction is defined such that the exponential part
of Eq. (3.20) is unity at the stator leading edge location at the hub.

3.3 Loading on Stator Vanes

Because the vanes are impermeable, they must induce an additional velocity to cancel

the normal inflow velocity at the vanes themselves. Thus vane pressure loading is generated
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by the negative of w and is found numerically by solving an integral equation. This integral
equation is obtained by modifying Eq. (A.21), which is derived in Appendix A. Eq. (A.21)

can be written as

+b
—Uﬂ(xl + vbhy, T2 + vbhy) = ei””/Kc(zl Y, T2)
b

Ap ‘;ﬁ;’z’) dby : (3.21)
where w is the upwash evaluated at the point (xz; + vbhy,z2 + vbhg). The variables z,
Ty, hy and hy are defined in Fig. A.1, and v, po and b were defined previously. Parameter
o is the inter-blade phase angle, —2wrsB/V, and K, is the cascade kernel function, both
of which are described in Appendix A. Note that the negative sign for o is a result of our
convention for counting blades. Variable U,. is the nominal fluid velocity in the rotor-fixed
coordinate system (see Fig. A.1), and Apyg is the pressure loading on vane v = 0, which
has arbitrarily been selected to be the reference vane; Ap, would be the loading on an

arbitrary vane. From the discussion in Appendix A, it is easily seen that

APV _ Apoeimr — Apoe—-2i1rusB/V (322)
gives the pressure loading on the vth vane.

If we restrict ourselves to vane v = 0 by taking £; = z and z2 = 0 in Eq. (3.21),

where z is the local chordwise coordinate used before, we find that

—w(z,0) /K (z—v,0 API;(;E,) ciy (3.23)

If w above is taken only to represent a single harmonic, then we use ws exp(iks2) (for vane

= 0) from Eq. (3.17) in its place, and Eq. (3.23) becomes

+b
APO s( ) dy

iksz — —
wse / KC(Z y) pOU b
-b

(3.24)

In Eq. (3.24), we have suppressed the 0 in the argument of K. and replaced Apg with

Apo s, where Apg , is the sth Fourier series harmonic for Apg. Finally, we can write
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Eq. (3.24) as

+b

: d
et = [ Kela =) flrv) - (3.25)
b
if we take
fs(r2) = Apos (3.26)

Po Ur w, )

In V072, we solve Eq. (3.25) for f,(r, z), the elemental stator vane loading function, to
find the vane unsteady pressure loading. Given fq(r, 2), the sth harmonic of the pressure

on vane v, Ap, s, is given by

Apu,s = pOUrwsfs (T, z)e—ZirusB/V . (327)

Relation (3.27), which will be used in the next chapter, follows easily from Egs. (3.22) and
(3.26).
The parameters needed to evaluate K., when solving Eq. (3.25), are listed below:
131‘: 1- ME)
Reduced frequency: K = —sBQb/(52c),
Inter-vane gap: h = 2nr/V,

Vane stagger angle: o,

I: —22B801 + M, M, (r/mp)sinas/B2].

These values appear in the discussion in Appendix A. In the above expressions, M is the
Mach number for the flow relative to the vanes, and M, is the rotational Mach number at

the rotor blade tip.
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CHAPTER 4

DUCT ACOUSTICS

To calculate the duct mode amplitudes excited by the interaction of the stator vanes
with the mean rotor wake, we first have to introduce the notion of normal modes. We will
then use the loading on the stator vanes from the wakes, in combination with a Green’s
function integral, to obtain the modal amplitudes. From these modal amplitudes we derive
expressions for sound power in the duct.

4.1 Normal Modes in an Annular Duct

The normal modes of an annular duct with hard walls are the set of solutions to the

two-dimensional Helmholtz equation having the special form

U(r,¢) = f(r) e™?, (4.1)

where m is any integer, positive, negative, or zero. The Helmholtz equation is given by

VI + k20 =0, (4.2)
where V2 is the two-dimensional Laplace operator, in polar coordinates,

T Oor2  rdr  r20¢?

In this equation, x is an undefined constant. As is shown below, the equation has non-

V2 (4.3)

trivial solutions which fit the appropriate boundary conditions on the walls of the annular
duct only for certain specific values of k. If Eq. (4.1) is substituted into Eq. (4.2), we
obtain

d2f 1 df

@ttt W =o (44)

Substituting u = &7 for 7 reduces Eq. (4.4) to Bessel’s equation of order m:
&f 1df m? _
Rt hd Uk S (4:5)

-91 -



The solutions are mth order Bessel functions of the first and second kind, i.e., f(u) =

Ym (K1), where

Ym(er) = AJn(kr) + BYnm(kT). (4.6)

If we specify that ¥(r,¢) = ¥,(k 7) exp (im@) is either the pressure or the velocity
potential, then the radial derivatives of ¥, must vanish at the inner and outer walls of the

duct, so if A and B are to be not both zero,

Im(eny)  Yo(en)
=0. (4.7)
Im(kr)  Yo(em)
This transcendental equation has a countably infinite number of roots « for every integer

m; if we denote these roots by Kmn, » =1,2,3,- -, and arrange them in order of increasing

magnitude, then the functions ¥y, (Kmn 7) have (n — 1) zeros in the intervalr, <7 <7,.

These functions are also orthogonal with respect to the weight function r over the

same interval; that is,

4]

/ r 'wm(“mn 7') 1/)m("5me 7') dr=0 (48)

H

unless £ = n. Using this fact, plus the fact that the functions exp (im¢), m = any integer,
are orthogonal on the interval 0 < ¢ < 2m, it is easy to show that the normal modes

Ym (Kmn T) exp (im¢) are orthogonal over the cross-section of the duct. Specifically,

™

2r
//{wm(nmn r) €™?} x {¢x(KreT) e‘ikd’}'rdd)dr
0

TH

0, if k #m or £ # n;

D (4.9)
2 [ Y2 (kmnT)7Tdr, ifk=m and £=n.

H

It is convenient to adjust the constants A and B in Eq. (4.6) (which are determined by
Eq. (4.7) only to within an arbitrary multiplicative factor) so that
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g P2 _ 2
/1/) nmn"' Td'r*— 2 ) = (410)

The orthogonality relation, i.e., Eq. (4.9), then becomes

> 2n
/ / {Wm(EmnT) €™} x {¢k(kreT) € —*Y rdpdr = w(rs 2 _ 1'3) Omk 6ne,  (4.11)
n O
where 6, and 6,0 are Kronecker deltas; 6, is equal to unity for m = k and equal to zero

for m # k.

A special FORTRAN program has been written which calculates £m,» and the constants
A and B in Eq. (4.6) subject to the normalization given in Eq. (4.11); for details see
Appendix B.

The significance of the normal modes is that they can be used to represent pressure
patterns which propagate within the duct without change in form, and that any acoustic
field within the duct, however generated, can be represented as a suitable combination of

these patterns.

The wave equation in a duct containing a fluid moving at a uniform axial velocity U

1S

?p 1,0 9 \2
2 —t —— ot—
Vp + 927 %( +U8:1:1) p=0, (4.12)

where p is the acoustic pressure, and V2 is the two-dimensional Laplace operator, defined

by expression (4.3).

Now assume that p has the form

Vm(Kmn ) (MmO~ 121-8BQY) (4.13)

where we have assumed for frequencies the blade-passing values, sBS}, introduced in the

last chapter. The pressure pattern above has m diametral nodes (like the spokes of a

* Between the rotor and stator an appreciable circumferential velocity exists as well.

This velocity is not accounted for in Eq. (4.12).
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wheel), and (n — 1) concentric circular nodes. If we substitute expression (4.13) into Eq.

(4.12), and recall from Eq. (4.2) that

v? ["/’m(nmn r) eim¢] = —K‘?nn Ym(KmnT) e, (4.14)

the following relation is obtained:

2
—k2 -7+ (ﬁf_l + gl) =0. (4.15)

Solving for v in terms of Kmn and sBfY, we set ¥ = Ymns and find that

1 (MsBQ

Ymns = ﬁ . + kmns) ’ (4'16)

where the plus sign is used for upstream propagating waves and the minus sign for down-

stream ones. Also,

Konms = \/ (iB—Q)Z e (4.17)

co
In the above expressions, M is the axial flow Mach number, U/co, and 8 = v'1 — M2

Eq. (4.16) shows that ymns is real whenever sBS2 is real and |sB2/co| > Bmn. Under
these conditions, the pressure pattern propagates unchanged along spiral paths normal to

the lines

M@ — Ymns T1 = constant, (4.18)

producing a rotating pattern. If sBSQ is real but |sBSQ/co| < BEmn, then Ymns is complex
and the pattern grows or decays exponentially along the duct depending on which sign in
Eq. (4.16) is selected.

Modal pressure patterns such as

Yrm(Kmn 1) €8~ Ymnoz1 = 2B0Y (4.19)

can be superimposed to form a general description of the acoustic pressure field in a
turbomachine. Thus, if we multiply the pattern above by an arbitrary coefficient, say

Prmns, and sum over m,n and s, we obtain
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p(f, t) = f: Z Z Pmns 7,Z)m("‘ffmn 7') e‘i(de—'ymng:cl _SBQt), (420)

s=—o00 m=—o0 n=1
where now 7 is the point (r,z;,¢) in the duct. Note that in general p(Z,t) is composed
of both propagating and non-propagating modal pressure patterns. The Fourier inverse of

this equation gives the sound pressure at the sth harmonic of blade passage frequency:

o0

ps(i"') = Z Z Pmns wm(nmn 7') ei(m¢—7mn8 zl)» (4.21)

m=—oo0 n=1
It should be noted that, following standard practice, when output is printed in the V072

code, the radial mode index is adjusted to begin at 0 instead of 1.

4.2 Duct Acoustic Modes

The acoustic modes of the inlet or exhaust ducts were just derived above. In this
section, we shall derive equations that relate these modes to fluctuating loads on the
stator vanes. The end result will be an expression for the complex pressure amplitudes
appearing in Eq. (4.21). If we assume a harmonic time dependence for the excitation, say
fo(Z) exp(—isBQt), which is the case for the wake, then pressure at the field point T will
also be harmonic with the same frequency, and will have the form ps(Z) exp(—isBQt).

This is due to the linearity of the governing equations.

It can easily be shown* that the pressure fluctuation p,(Z) within the duct is given,
in terms of the force/unit area fs(Z) exerted by the vanes on the fluid, by the Green’s

function integral

po(3) = / (V3 CE )} o (&) dS@), (4.22)
S(7)

where S(%) represents both surfaces of the vanes and Vy is the gradient operator with

respect to the vector . In this equation, G(Z,¥) is the space-only dependent Green’s

* QOne way to see this is to start with Eq. (4.13), the time dependent Green’s function
integral for density fluctuation p(Z,t), in Ref. 19. Multiply through by c} to switch to
pressure fluctuation p(%,t). Then proceed much as is done in section 4.3.2 (“Application

to Pure Tones”) of Ref. 19 in obtaining Eq. (4.25) there.
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function for a hard-walled annular duct. It is the same function as G, (¥ | ) given by
Eq. (1.C.12) in Ref.19. If we introduce a cylindrical coordinate system such that the field

point Z is (r,x;, ), while the integration point 7 is (r’,y1,¢’), then G can be written as

follows
o0 e ] /
G(Z,§) = _:‘21; Z Z 2prn(""'rnnk"') "1’17111("‘7mn"’) ez[m(¢—¢ )+'7mns(y1—-‘r-‘1)] , (4.23)
m=—o0 n=1 mns
where I = n(r? — r2).

The coordinate system used is pictured in Fig. 4.1. This figure is obtained by con-
sidering an imaginary cylinder, of radius r, centered at the duct axis of symmetry. The
intersection of this surface with the stator is what is depicted. The origin is located where
the leading edge of the stator intersects the hub. In contrast to the situation in Fig. 3.1,
the origin is always here rather than moving with the leading edge as the radius changes.
In expression (4.16), which defines Ymns, the plus sign is used for upstream field points

(r; < y1) and the minus sign is used for downstream field points.

If the fluid is assumed to be inviscid, the force f_; will be normal to the surface,

fo=ps 1, (4.24)

where 7 is the outward surface normal and p, is the local pressure. Thus

p@= [ @) (V5 CEN) 2@ dSD. (4.25)
S5
The integration is to be carried out over both faces of each vane. On each vane, we can

divide the integral in the equation above into two parts, one over the forward or upstream
face of the vane, and the other over the downstream face. Denoting the upstream face by
superscript (+) and the downstream face by superscript (—), we have, because the vanes

are very thin,

psﬁ = (ps_ - Pj) ﬁ" (426)
where 7 is the unit normal vector erected on the mean surface of the vane as shown in

Fig. 4.1. Define Ap, as Ap, = p; — pt, which is positive when the pressure is greater on

the lower face of the vane. Then

— 926 -



To
J

<
i
N

<
8

A A Ay

L

l, Y2 (-¢) '(ﬂ)

N

axis of rotation

stator L.E at

T1,Y1

£

S

radius= 7

stat

or L.E a

A/

t

radius = %

—_97 -

Fig. 4.1 Stator Geometry for Acoustic Mode Analysis. }

RO




pa(@) =~ [ #(@)- {5 Cle.1)} Apuld) 45D, (4.27)
SM
where now the integration is over the vane mid-surfaces S,, (as opposed to the two vane

faces).

Using expression (4.23), Eq. (4.27) can be written as

= 3 S Ginlomnr) sz

m=—cc n=1

(4.28)
N 5 . - 1(_m¢l + Ymns yl)
X g [ ) A0 - Ve | ap.(@ as(@).

Note that Ym(kmnT) expli(meo — YmnsT1)] is a rotating pressure pattern of the type
discussed previously.* Eq. (4.28) is thus a normal mode expansion of the sth harmonic of

the acoustic pressure within the duct. Comparing Eqgs. (4.21) and (4.28), we see that

= —_— - 1(—m¢ + Ymns y1)
pmgmm/%%ﬂ@V[ | dpu(@) d5(@,  (429)

where the p,ns are the complex modal amplitudes introduced in Eq. (4.20). Eq. (4.29) is

the starting point for evaluating these coefficients.

In Eq. (4.29), the integration is to be carried out over all V' stator vanes. As before, to
reduce the region of integration to one vane, we arbitrarily select one vane as a reference
vane. We assign this vane the number 0, and the remaining vanes, in the direction of
decreasing ¢/, the numbers 0 through (V — 1). Using the notation in Chapter 3, let the
pressure on the vth vane be Ap, (%), where g is the point (r',y1,4’) on the v = 0 vane.
Then the corresponding point on vane v is (r',y1,¢’ — 2rv/V). The total contribution of

all V vanes is thus

Prns = ST / Y () () - Vg e +2mnew)]

(4.30)
{ Z Ap,, s 27rzmu/V} dSo (?70)’

v=0

* Except for the factor exp(—isBSit).
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where we have gone from a notation where S,, represented the middle surfaces of all the

vanes to one where Sy represents the middle surface of the reference vane.

Referring to the geometry in Fig. 4.1 and noting that the normal vector on the

reference vane is # = (sin a, cos g ), we have that

-V [ei(_m‘ﬁl"””""syl)J =1 (:—tf- COS Ol + Ymns SiD Ol ) (=’ +¥mnsn1) (4.31)

Note that because ¢ and y; are in opposite directions, there is no minus (—) sign preceding
the m/r’ term. To facilitate the integration over the vane surface use the intrinsic chordwise
coordinate 2’, which as before varies from —b at the leading edge to +b at the trailing edge.
From Fig. 4.1 we see that

Y= —Tgp +bcosa, + 2 cosag, (4.32)

¢ = (—ysp +bsinag + 2’ sinay) /7. (4.33)

Using 7 and 2’ as integration variables, and applying Eqs. (4.31) - (4.33), Eq. (4.30)

becomes

1

o)
n(m .
Pmns = grp—— Ym(EmaT) (; €OS &g + Ymns SIiD as)
mns
s

b v (4.34)
X ei(“'Ymns ISD+ mysp/r') /{ Z Apu’s(»rl, z’) e27r‘iml//V}
b v=0

x e* [(‘Ymna cosag—msinag /r’)(z'+b)] dz’ dr'.

The sth harmonic of the pressure loading on vane v is given by Eq. (3.27). If we substitute
this into Eq. (4.34), we have
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m
pmns":m/"/)m(ﬁmn"') Ur ws(r, COS Qg +'ymn_,sma5)

H
V-1
% ei(—7mnsxso+mysp/rl) {Z 62ﬁiu(m_38)/v} (435)
v=0

b
« [ 1,01, 2) elmseosesminas s @40] 4t

—b

The sum over vane number in Eq. (4.35) can be evaluated explicitly:

v-1 V, f m—sB=—qV;
Z e??riu(m-sB)/V — {
=0 0, otherwise.

Here g is any integer. The final result is

Dmns = 2Pk / Y (Kmn ™) Ur ws(7) (—— oS Qg + Ymns Sin Q)
mns

. (4.36)
x e~ YmnsZTspt+tmysp /) / fs(’f‘, Z) e [(7""‘3 cosag—m sinag /r)(z+b)] dzdr,

-b

where now the primes have been dropped from z and r, and the index m is given by

m = sB —¢V. (4.37)

Eq. (4.36) is our final result. As is evident from Eq. (4.36) above, pmn, is propor-
tional to ws, the sth-order Fourier coefficient of the mean rotor wake. The computer code
computes these coefficients, as mentioned previously, using semi-empirical information.
However, the code can easily be modified to accept the Fourier coefficients of the wake
velocity as inputs, and compute the duct modes directly from them. Additionally, new

semi-empirical wake modules could be added to V072 to supplement those already there.

As a final remark, let us note that once the pressure amplitudes, pmns, are specified
by virtue of Eq. (4.36), the pressure at any point within the duct can also be determined,

if desired, from the summation
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[ o] o0 o0

p(f? t) = Z Z Z pmnswmns (Rmns T)ei(m¢_7mnszl_330t) b] (4'38)

g=—00 n=1 s=—o0

where m = sB — ¢qV.

4.3 Sound Power

The flux of sound power in the duct, is found by substituting Eq. (4.36) into Eq.
(C.20) of Appendix C, which is written as

2 2) [e <] (> <] oo

POWeI'='—Pp‘OU.—H Z Z z Gmns |pmns|2- (439)

g=—occ n=1 s=—o0

Here Gns is defined as

o FM?2B% (sBQ/U) kmns
ST (sBQ/co £ MEmns)?

The upper set of signs apply upstream of the stator and the lower set apply down-

(4.40)

stream. The details describing how power is determined are presented in Appendix C.
In Eq. (4.39), the index m is given by Eq. (4.37). Finally, if the sound power at one spe-
cific harmonic of the blade passage frequency is desired, the summation over s is deleted,

and s is set equal to the desired harmonic number.

Note that for a propagating mode (m,n) at harmonic s, another mode (—m,n) of
complex conjugate amplitude propagates with frequency —s. Because the amplitudes are
complex conjugates, V072 only calculates positive harmonics. The total sound power for

the mode is then evaluated from just the one by applying a factor of 2.
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CHAPTER 5

NON-DIMENSIONAL RESULTS

The V072 program uses non-dimensional input geometry and performance parameters.
It uses these quantities to compute dimensionless versions of pressure amplitudes and power
and then converts the results to dimensional values. The final output of the program is the
magnitude and phase of each propagating mode excited by the interaction of the stator
vanes with the wake of the rotor. The sound power flux per mode is also computed and,
by summing over all propagating modes, the total sound power flux is obtained. Note that
propagating modes are those discussed in Section 4.1 for which sBQ/co > B&mn. Modes for
which sBQ/co < BKmn are said to be cut off and are not included in the output. Note also
that a multi-vaned stator, as seen by Eq. (4.37), excites only a subset of the propagating
modes at any given frequency; specifically, only modes whose number of diametral nodes,
m, is related to the number of rotor blades and stator vanes by the equation m = sB—4qV/,
where s and ¢ are arbitrary integers. The program takes this selection mechanism into

account in choosing which mode amplitudes to compute.

In performing its calculations, V072 is divided into two parts. It first carries out the
rotor wake calculations and then computes the acoustic results. To do this, it needs both
geometric and performance input. Note that performance data would normally come from
a steady aerodynamic prediction code of axisymmetric or two-dimensional nature. (See

Ref. 3 for more discussion of this.)

Non-dimensionalization in V072 is with respect to a reference pressure % poU?, a ref-
erence power %poch 47‘3, lengths 7, and b, and speeds co,U and U,. Here po is the
nominal flow density, U the mean axial fluid velocity, co the speed of sound in the duct,

M =U/co,r, the duct outer radius, and b, the vane semi-chord at the tip.

5.1 Pressure Amplitude

The dimensionless expression for the complex pressure amplitudes is easily derived

starting from Eq. (4.36). After straightforward effort, it takes the form
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Vv L oUN\2
Pmns  _ Oc _ / (_L_;_) Ws Vm (X,,mm) (%cosas+ﬁmmsina5)

%poU2 W(l - a'z)kmns (5.1)

x eil=Amaastmys /o] o (2) da.

In the above, o, = 2b,./7,; 0 =1, /T, Where 7;, is the hub radius; Ymns = Ymns7p, Where
Ymns, the axial wave number, is the same as in Eq. (4.16); and l~cmns = Kmns T, Where

KEmns is the same as in Eq. (4.17). Note that 4nns and Emns can be written, explicitly, as

&mns = % (SBMMT) + ’Emns (52)

and

kmns = V/(sBM)? — B2X2,,, (5.3)

where M_, is the rotor rotational Mach number at the blade tip and B8 = +/1 — M?2. Further,
in Eq. (5.1), Xmn = KmnT, Where Km, is the eigenvalue for mode (m,n); z = 7/ry;

Ts = xSD/QbT; Ys = ysn/Qbr; and b = b/2b,..

Additionally, Cpns(z) is the same chordwise integral of the elemental blade loading
function f,* multiplied by an exponential function, as seen in Eq. (4.36), only here non-

dimensionalized using the chordwise parameter 2/b. It is given by the expression

b o B4 ; dz
Cmns(x) — / fs et [a'cb(—ymns cosag—msinag /) (1+z/b)] _b_. (5.4)
-b
Because f, has a square root singularity at the leading edge (z/b = —1), it is necessary to
change the integration variable from z/b to ¢, where z/b = cos. We then have
Cmns (27) — / fs szp e[ia'cl;(;/mns cos ag—msinag /x) (1+cos z/))] d"/) (55)
0

This integral is easy to compute numerically using Simpson’s rule, because the product

fssin® is finite at the leading edge (¥ = ).

* Note that the elemental loading function f, becomes a different function as its inde-
pendent variable changes from step to step. However, for simplicity of notation, we still

denote it as fs.
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The parameter @,, used in Eq. (5.1), is defined as w,/U,., where w; is the quantity

given by Eq. (3.20) and U, is given by Eq. (3.9). It can be written as

Wy = W, e 5B ["c(yn"*’ys)/:“zson tanag +Tg5op 4 tan "‘CL,H] (5 6)
% e-—isB [acl;(sin agtcosag tanaCL)/:t] , )
where
. W,
Wy = —sin(ag + ag, ). (5.7)

Ur
Also, y, = Ypp/2b, and T o, = Tgp,/2b,.

The spanwise integration in Eq. (5.1) requires special treatment because s, as seen
in Eq. (5.6), contains a phase angle, ., tana,,, which varies rapidly over the span
when the separation between rotor and stator is large or when the relative flow angle at
the stator leading edge, a,, is a strong function of the radius, 7. To handle this rapidly
varying phase, an adaptation of Filon’s rule of integration has been used for the spanwise
integration (see Appendix D). Note also that for spanwise integration, V072 requires values
of geometric and performance quantities at radial locations determined internally by the
program. To obtain these parameters at the necessary locations, V072 linearly interpolates

the pertinent input data.

To obtain f,(y/b), which is needed in Eq. (5.4) to evaluate Cpns(z), one solves the

dimensionless version of Eq. (3.25) which is easily seen to take the form

1
il::,z/b — i:_g g g
’ /y/b=—1 Rel=7) 1) d(b)’ (5.8)

whose kernel function K ((z — y)/b), as mentioned previously, is derived in Appendix A.
The quantity k, is the non-dimensional version of the vane chordwise wavenumber k, (see

expression (3.19)). It is given by

sBa/b

ky = kb= (sinag +cosagtana,,). (5.9)

Finally, there are issues as regards a singularity at the leading edge. For this reason

Eq. (5.8) must be changed to the form
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gikscos — /ﬂ K (cos@ — cosp) Fy(v) dup, (5.10)
0

using the same chordwise type transformations as used previously, i.e., 2/b = cosé and
y/b = cost. In Eq. (5.10) we then have F,(¢)) = fs(cos®) sinty. The singularity issues
along with a solution of Eq. (5.10) using the method of collocation (Refs. 20 and 21) are
discussed in Appendix E.

Note that, in the code, magnitudes and phases of the pressure mode amplitudes are
printed out. The phases are given for positive values of the index s. The magnitudes are
r.m.s. values obtained by time-averaging the square of the sum of the +s and —s waves,
{Pmns exp(—isBU) + P(—m)n(—s) exp(isBQt)}z. Since P(—m)n(—s) = Pmns> the result
of this calculation is v/2 | pmns |- Before output, the magnitudes are converted back to
dimensional form through multiplication by % poU?. The final result is then presented in

dB units relative to a reference pressure of 0.0002 x 1.4504 x 10~ psi (i.e., 2 x 107° Pa).

5.2 Sound Power

Given the modal amplitudes pyns /(%poU 2), the sound power is obtained from Eq.
(4.39). Non-dimensionalizing by poc3M 41'3, we have

Power Gmns
-poc3M4r2 Z Z M7‘2

g=—0c n=1

pmns

2
rpnill (5.11)

where Gyuns is the quantity given by Eq. (4.40), m = sB — ¢V, and sound power in Eq.
(5.11) is for one specific harmonic, s, of the blade passage frequency. In obtaining Eq.
(5.11), we have used the fact that %poch“rg is equivalent to 1poU3M7r2. Eq. (5.11) can

finally be re-written as

I_Posv_v_er_=z 2277 1—0 Gomns

= 42
SPOCOM TD g=—00 n=1

Pmns

2
W ) (5.12)

where

A _ :F I‘;mns SBMT/B4
mns — = 9
(sBM, £ Mkons)

Again, as for expression (4.40), the upper set of signs apply to power for waves propagating

(5.13)

upstream and the lower set apply downstream.
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V072 gives values of sound power for three different cases: (1) for the sum of all modes
with a given s; (2) for the sum of all modes with a given s and m; and (3) for individual
modes with given s, m, and n. Case (1) is treated using Eq. (5.12); case (2) using Eq.
(5.12) with the summation over ¢ deleted and g set to give the value of m desired; and
case (3) by taking the individual term in Eq. (5.12) corresponding to m,n,s. For all
three cases, as for the mode amplitudes, the actual power output comes from summing the
values for both +s and —s. Additionally, the power is converted back to dimensional form,
through multiplication by % pocs M 4rD2, and then given in dB units relative to a reference
power of 10-12/1.3558 ft-lbs/sec (10712 watts).
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CHAPTER 6

CONCLUDING REMARKS

This report is an updated version of the analytical documentation for the V072 Rotor
Wake/Stator Interaction Code. It provides updated geometry and revised equations and
has eliminated the material related to turbulent acoustic sources, because these sources
are not active in the code. Additionally, equations are now developed in terms of integer
multiples of blade passage frequency, rather than the more general frequency w used when
turbulence was covered.

In this report, equations have been derived for the amplitudes and power of the prop-
agating duct modes excited by a turbofan (rotor/stator stage) operating at subsonic tip
speed within an infinite hard-walled annular duct. The equations used in the code are
non-dimensional and the output is tone noise generated by the mean velocity defect wakes
of the rotor blades impinging on the stator vanes. Output is provided at blade passage

frequencies for the propagating (cut on) modes.
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APPENDIX A

KERNEL FUNCTION FOR A LINEAR CASCADE
IN SUBSONIC FLOW

The kernel function for a cascade of thin airfoils in oscillating subsonic flow has been
derived by several investigators, using a variety of methods (Refs. 5-9, 22). Of the vari-
ous approaches employed to date, the method of Fourier transforms is perhaps the most
straightforward. This procedure was used in Ref. 9, for example, but the inversion of
the Fourier transform was accomplished numerically. More recently, Goldstein (Ref. 19)
pointed out that the Fourier transform of the kernel function contains no branch points,
so the inversion can be accomplished quite easily by using the Cauchy residue theorem.
Goldstein outlined the procedure to be followed, but did not actually carry out the calcu-
lation of the kernel function. The purpose of this appendix is to set forth the details of
the inversion, and to record the end result. For the convenience of the reader, as well as
to document the notation used, a brief derivation of the transform of the kernel function

is also presented.

The cascade geometry is shown in Fig. A.1. The airfoil semi-chord is b, and the gap
between the neighboring airfoils is bk, with components bh;, projected along the chord,
and bhy, normal to it. The airfoils are shown as having no camber, because the ultimate
objective is to calculate the pressure field scattered by the cascade when it is subjected
to vorticity convected with the mean flow. However, other situations, such as a cascade
of oscillating airfoils, can be handled as well. For the purpose of calculating the kernel
function, we need only suppose that a known chordwise pressure distribution exists on

each airfoil, and calculate the resulting velocity field.

The first step is to calculate the upwash generated by a single airfoil. Let the pressure
be given by the real part of pexp(—isBS), and the corresponding velocity field be the
real part of (wy,ws)exp(—isBQt). Then, p satisfies the convected wave equation, and
the velocity field is related to the gradient of p through the equations of motion.* These

equations are

* p and (w;,wz) now represent the sth harmonics of pressure and velocity field.
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p 0% 1 a9 2
— + —% — —(~isBQ+ U,—)p =0, Al
Ak ovi) ? (A0

) 0 1 op )
—sBQ+Up—)w; + —— =0; =1,2. A2
( 33/1) 7" po Oy; J (42)

Consistent with the definition of Fourier series in Chapter 3, the following definition of the

Fourier transform pair is chosen:

+00
1 .
— = ,Liaiy1
=3 [ peman, (A.3)
+oc
13=/ p e tVidy,. (A.4)

The Fourier transforms of Eq. (A.1) and the second of Egs. (A.2), ie., for j =2 are

?p o
. 1 dp
i(—sBQ + al,)wes + —=— =0, A6
( Ja (A-6)
where
A = [o? — M2(a — sBQ/U,)Y]%. (A7)

The pressure p generated by an isolated airfoil is bounded at infinity, and, because the
airfoils are assumed to have zero thickness, is antisymmetric in y2. A solution of Eq. (A.5)
satisfying these conditions is

Ap(a)

p=——5— e~ Mzl sgn(ys), (A.8)

provided that X is defined so that its real part is non-negative on the path of integration
used to invert the Fourier transform. In Eq. (A.8), Ap(a) is the Fourier transform of
the chordwise pressure distribution, Ap, on the airfoil. (Ap is positive if the pressure is

greatest on the lower face of the airfoil.) By eliminating § between Eqgs. (A.6) and (A.8),

— 40 -



we obtain the Fourier transform of the upwash generated by a single airfoil. The upwash

itself is

“+oo

w2 __1 A AP(Q) iay1—Alys]
7. Wnv2) =~ o / % (a — sBQJU,) poU2 © dax. (A.9)

— o0

The upwash generated by a cascade of airfoils, located at the points (y1,y2) = m(bh1,bhsa),

m =0,+1,%2,..., is obtained by summing the contributions of the individual airfoils:
+o0
U, w2 om 4= | 2i(a—sBQ/U;) poU? (A.10)

x eia(m —mbhy)—A|y2—mbha| do.

This infinite series can be summed analytically if the transformed pressure distribu-
tions on successive airfoils in the cascade [i.e., Apm ()] are related by a constant increment

in phase angle. That is, for any integer m,

Apm(a) = Apo(a)e™?, (A.11)

where Apo(a) is the transform of the pressure on the “zeroth” (i.e., reference) airfoil, and

o (called the inter-blade phase angle) is a constant given by*

2wsB
0=——- (A.12)

To calculate the upwash near any selected vane, say vane v, introduce

1 =Yy - I/bhl, ' (A.13)
Ty = ys — vbhy, (A.14)

and
n=m-—u. (A.15)

* This value can be derived by proceeding as in Ref. 23, page 38, only using our

definitions of geometry and parameters.
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Then

%).—2'(:31 + vbhy, x9 + vbhy) =

r

. +oo )
eweo / Apo(a) /\S(a)ezax1 i
2m poU2  2i(a—sBQ/U;)
—_00
where the infinite series
+o0 .
Sla)= 3 eline—Alezmnti|—ianths)
can be summed as
1[e(3a+—rz2)  (3A_+Az2)
S(a) =3 . 1 - N 1 ,
2| sinh(2A4)  sinh(3A_)
for
0 <z < bh2,
where

Ax = £Abhg +i(0 — abhy).

Now, use the convolution theorem to calculate the inverse of Eq. (A.16)

+b
%(m + vbhy, Ty + vbho) = €7 / Koz, — ¢, z2) L:?;}Jj(g) db_C,
—b
where K. is the desired cascade kernel function given by
b i A Seios
K.(z1,22) = ~5r 2i(a — sBOJT.) do.

The factor b is included to make K. dimensionless.
It is convenient to introduce dimensionless variables, as follows:
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(A.19)

(A.20)

(A.21)
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K = —sBQb/ (52 co), & = x,/b,

(A.23)
ab— M, K, ¥o = x9/b.

o

where 3, was defined at the end of Chapter 3. The shifted transform variable & completes

the squares in A:

N rrye) (A.24)

b
Then
. N +o0 s
_ BetKMn / Set
Ke=-—""%5 3G 1 K/ °% (4.25)
where now
1
Y= (& - K?)E, (A.26)
1 C(%A+ -ﬁ,—‘y:‘éz) e(%A— +ﬂr’752)
P L _er (A.27)
2 smh(§A+) 81nh(§A_)

Notice that 7S is an even function of v, so that even though the integrand contains

the variable

= VIR, (4.28)

there can be no branch points at & = £K. Thus, if we apply the residue theorem to
evaluate the kernel function by closing the path of integration on a large arc in the upper
or lower &-plane, no residual integrals around branch cuts appear; the kernel function is
simply the sum of the residues in the upper or lower half plane. To insure that the integrals
on the arcs vanish as their radii are allowed to become infinitely large, the integrand in
Eq. (A.25) must be modified. First, note that

1 9%8

S=Gar o (4.29)
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so K. can be written as follows

eiK M,%q 1a:1:1

Ke =~ omiB, a:c2 27 &+ K/M ) (A-30)

The integral above can be evaluated via the residue theorem by using the contours
shown in Fig. A.2, and the differentiation with respect to £ carried out afterwards. If
#; > 0, the integral around the semicircle in the upper half plane vanishes when the radius

of the contour goes to infinity. Thus,

2 i i
1 KM,y i/ {sum of residues in } (A.31)

Ke= B, 0% | upper half plane
On the other hand, when #; < 0 the integral around the contour in the lower half plane

vanishes, so

1 xkmz, 0 [ sum of residues in
Ke= +E_e 932 | lower half plane (A-32)
The integrand in Eq. (A.30) has poles at & = —K/M,, and at points where
sinh(%A:h) = 0. The latter set of points are located at af where
Ay =2n7mi (n = any integer) (A.33)

[cf. Eq. (A.27)]. When A, is real, some of these poles lie directly on the real axis. To
arrive at the correct expression for K¢, it is necessary to invoke the causality condition by
stipulating that K has a small negative imaginary part. Once the kernel function has been
evaluated, we can let Im(K) — 0. The effect of this procedure is to eliminate the possibility
that acoustic waves not generated by the cascade itself are inadvertently included in the

solution.

If Im(K) <0, the pole at & = —K/M, is clearly in the upper half plane. The residue
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s

M, sinh(B2Khy /M) o—iKE1 /M,

R, = 28K | cosh(B2Khy/M,) — cos(T" + Khy/M,) (A.34)
where
Khy
I' =0 - abh; — i (A.35)

Using Eq. (A.12) for o, Eq. (A.23c) to obtain o when & = —K/M,, and Eq. (A.23a) for
K, we can rewrite Eq. (A.35) as

I'=-— 2W;B 1+ MTMT(T/TD) sin as/ﬂfjl ’ (A36)

which is the expression for I" used in the code.

The roots aZ of Eq. (A.33) are given by

of = P';?hl + 5’;2 [K? — (Ta/d)?] L3 (A.37)
where
I'n =T - 2nmn, (A.38)

d = y/h2 + 2h3. (A.39)

If the square root in Eq. (A.37) is defined as follows,

1
2

[Re®]? = VRe¥/2, 0 < 6 < 2m, (A.40)
where VR is the positive square root of R, then solutions a,f having the plus (minus) sign

in Eq. (A.37) are located in the upper (lower) half plane. In either case, the residue is

ﬁrh2 1 eiafil
2@ |(aZ — Tohy/®) (o + K/M,) '

Using Egs. (A.31) and (A.32), and carrying out the indicated differentiations, we

Ru(o) = (A-41)
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obtain the final result

K. = ﬂ?K[ sinh (82K hy /M) ] KM,
2M, | cosh(B82K hy /M) — cos(T' + Khy /M)
(A.42)
o0 2
_ B2hs +Z (at” - K2) } ei(a:{+KM,)5;,
2d? n=—o00 (a: - I111.’1'1/‘12) (aI + K/Mr)
if #; > 0, and
fhy R [ (0z” - K?) ] i(oag+KM, )2

Ke=5, nTRMP)E A.43
2d? n;w (@ — Tuhy/®) (an + K/M,) | © (A.43)

if #, < 0. Having calculated the kernel function for Im(K) < 0, we can now let Im(K) — 0.
Then the roots a become, using the branch of the square root employed previously in

Eq. (A.37)

oF = F’;fl L ’"dhz V(Ta/d)? - K? (A.44)
if I'n/d| > K, and
L LNy ey (e (A.45)

if |Tn/d| < K. In Egs. (A.44) and (A.45), off is to be calculated using the upper set of

signs, and o, using the lower set of signs. The y/ sign means the positive square root.
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APPENDIX B

NUMERICAL COMPUTATION OF THE NORMAL MODES
IN AN ANNULAR DUCT

As discussed in Chapter 4, the normal modes in an annular duct are functions of the

form

wm("‘:mn T) = AJm(Kfmn T) + BYm(’Cmn T), (Bl)

where Jp,(-) and Yy, (-) are Bessel functions of the first and second kinds, and Kmn's are

the roots of the following transcendental equation:

PACTONNS ACTY
=0. (B.2)
Tnlsrs)  Yalsn)

The roots Kmn 7, of Eq. (B.1) are found by first estimating the roots as follows:

m, ifn=1;
Kmn Ty = (B.3)

Km,n-1Tp + 7, ifn>1
This estimate is refined by incrementing the estimated value of Ky, 7, by 7/10 until the
determinant in Eq. (B.2) changes sign. The step size is then halved and changed in
sign. This process continues until the absolute value of the determinant is reduced to a
preassigned value. In the code, this is done utilizing the non-dimensional versions of the

above equations.

Once the eigenvalue K, has been computed, the constants A and B are assigned one

of the following two sets of values:

A=1 A=_Y,'n(fsmnrn)

{ B _ I (Kmn 7)) or { I (BmnTy) . (B.4)
Y (KmnTp) B=1

Of these two sets of values, the one for which (A% + B?) is the smaller value is chosen. If

(A2 + B?) is the same for both, then the second set is picked. The desired normalization,

namely,
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(r2 -2, (B.5)

l\DI'—‘

7¢m(f€mn r) rdr =

is obtained by computing the value of the integral on the left-hand side of the equation

above, using the formula

D
1/, m? 9 D
/¢ Kmn T)Tdr = 3 ('r — ﬂ?,m) Ve (KmnT) . =C (B.6)
—H
The constants A and B are then divided by
2C/(r2 - r2) (B.7)

to give the normalization required by Eq. (B.5).

Note that in terms of non-dimensional variables, Eqs. (B.5) and (B.6) can be written,
respectively, as
h 1
/ Y2 (Xn2) 2z = 5(1 - 02) (B.8)

Tr

and

1
(B-9)

1
1 2
/’gb,%,,(an-’B) rdz = 5( 2 X2 > "/Jm(an-'E)

T=0,

The non-dimensional parameters in Egs. (B.8) and (B.9) are the same as the ones originally
used in Chapter 5. It is easily seen that the factor by which A and B are to be divided,

can be written explicitly as

\/ (L = m2/X20) Y2 (Xmn) = (02 = m?/ X0 ) ¥ (Xin 7). (B.10)

1-o02
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APPENDIX C

SOUND POWER FLUX

The sound power flux through any cross-section of the duct is given by (Ref. 19)

Power = / < I,z > dA, (C.1)
A
where I, is the axial component of the acoustic energy flux vector, < I, > is the acoustic

intensity, which is defined as

B x/BQ
< Igy >= o / I,. dt, (C.2)
—x/BQ

and A, is the cross-sectional area of the duct. In a duct containing a fluid flowing at a

uniform axial velocity U, I,, is, in turn, given by

I, = (% + Uu) (pou + pU), (C.3)

where po is the nominal fluid density and p, p, and u are the instantaneous acoustic
perturbation pressure, density and axial velocity, respectively. The quantities p and u are
real. Although not explicitly stated, all acoustic variables are functions of both space and

time.

The acoustic pressure and density perturbations are proportional to one another (p =

c2p), so Eq. (C.3) can be rewritten in terms of the pressure and axial velocity as

M
Iz = (14+M*)pu+ pO—COPP-i"PoCoMUU, (C.4)

where M = U/cg is the nominal axial flow Mach number. For p and u real, we can write
pu = pu* and uu = uu*, where the superscript * denote the complex conjugate. Hence,

Eq. (C.4) can be rewritten as

M
I, = (1+M2)pu*+p—00pp*+pocoMuu*. (C.5)
0
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For functions of ¢, we reverse the Fourier series sign convention used in Egs. (3.5) and

(3.6) for the spatial variables. Then, p can be written as the Fourier series

o0
pE )= D po(&) e B, (C.6)
8=—00
where
«/BQ
po(@) = oo / p(,1) €*B% dt. (c7)
—n/BQ

There is a corresponding definition for u(Z,t) and us(Z). The axial acoustic energy flux,

I.., can now be written as a double summation

o0 oo

=Y % [(1+M2>p,(f)u;z(f)+%f‘%p@p;(ﬁ)

$§=—00 U=—00

(C.8)

+ pocoM u, (%) uy, (%) e—i(s—w)Bat

Both p,(Z) and u,(Z) can be written as sums of modal pressure patterns as in Eq.

(4.21). Thus

ps(%) = Z Z Prmns Ym(KmnT) H(mé—TYmnsT1) (C.9)
m=—oco n=l
wl@ = D Y urey Yr(rrer) eitke=menzr), (C.10)
k=—o0 £=1

" The modal coefficients pmns and Umns are not independent, but are related through the
axial momentum equation,

Ou ou 1 0

ot or, pPo 0z,
Let the pressure and axial velocity be given, for each harmonic, by the real parts, respec-

tively, of p, exp(—isBQt) and u, exp(—isBSt). Then Eq. (C.11) reduces to

(C.11)

Ou,s + 1 0ps
0r;  po 01y

—isBQu, + U =0. (C.12)
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If Egs. (C.9) and (C.10) are substituted in Eq. (C.12), the following relationship is obtained,

A
Umns = — i mns C.13
U ” (C.13)
where
Tmns
Amns = . C.14
SBQ/U + Ymns ( )

The axial acoustic energy flux can now be written entirely in terms of pmns:

o0

573 Y D Ymlkmar) vk(ker) £m7H?
m=—o0 n=1 k=-o00 £¢=1
]l — w— . . C.15
'—ﬁ E Z [M? — (1+ M?) Ay, + Amns Afg,) ( )
§=—00 HU=—
% e——l [('Ymns_'Yklu)zl_(s—#)BQt] Dmns p’:e“.
Using this relation and Eq. (C.2), then
<Iz>= 3. 3. > > tm(kmnr) Yr(rrer) gltm=1¢
m=—o0 n=1 k=—ooc £=1
/B
27rp0U Z Z / [M2 - (1 + M2) AZ[}_‘, + Amns AZZ#]
SETX® MET® _x/BQ
% e—i [(7mns_'7k£u)zl—(3_ﬂ)BQt] pmns p”:e“dt —_ (C.16)

Z Z Z Z Y (Kmn ) Uk (KikeT) e(m—k)¢

m=—oc n=1 k=—oo £=1

x ’p_— [M2 1 + M2) Alt:ls + Amns A::es]
0

X e —i(Ymns —Yk£s)T1 Dmns pl:ls'

Note that in obtaining Eq. (C.16), those terms in the integrand for which u # s, are
periodic in ¢ over the interval 27/BS}, and thus they average out to zero and do not

contribute to the integral.
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Substituting for < Iz > in Eq. (C.1), the sound power is found by performing the
integration over the cross-section of the duct. Utilizing the orthogonality conditions that

exist, to eliminate product terms involving different modes, we find that

2

Power = /
0

2 2,2
/ < Ip > rdrdd):f(rl’—ri’—)
poU

TH (C.17)
x Z Z Z 1 + M2) Amns + IAmns| ] |pmns|27
m=—o0 n=1 s=-—

where the integral over the cross-sectional area of the duct A, is written explicitly in terms

of 7 and ¢ coordinates.
The term in the square brackets which, henceforth, we denote as Gmns, can be sim-

plified, resulting in

FM2B*(sBY/U)krmns
[sBQ/co + Mkmp,)®

(C.18)

mns —

where the upper set of signs applies upstream of the stator and the lower set applies

downstream. In terms of Gp,,4, then, we have

POWCI‘— E Z Z Gmns |Pmns|2 (Clg)

m=—oc n=1 s=—o0

Finally, recalling that the index m is related to the summation indices s and ¢ through

the relation m = sB — gV, Eq. (C.19) becomes

o0 o0 o0

(r —7‘2) 2
Power— H Z Z z Gmns |Pmns| (020)

g=—00 n=1 $=—00
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APPENDIX D

FILON’S INTEGRATION RULE

Filon’s integration rule applies to integrals of the form

b
/ f(z)e*9® dz, (D.1)

where the phase function g(x) is a “large” linear function of z, so that use of the trapezoidal
rule or Simpson’s rule would require that the interval of integration be divided into many
subintervals to obtain an accurate answer. Filon’s rule is obtained by assuming that the
function f(z) can be approximated by a quadratic function, but the exponential function
explig(z)] is integrated exactly. To extend this procedure to integrals wherein g(z) is not
a linear function of z, we need only approximate it as a linear function within each z
subinterval. The most straightforward procedure is to approximate both f(x) and g(z) as

linear functions of z. For example, to compute the following integral

b
I=f f(z) 9@ dz, (D.2)

divide the interval (a,b) into N equal subintervals of length h = (b — a)/N. The integral

over the nth subinterval is then

Tn+h
I, = / flz) €9@)dz. (D.3)

Tn

To compute this integral, approximate both f(z) and g(z) as linear functions:

1@ = fut (o = 1) (2522, (D.4)

9(z) = gn + (gn+1 - gn)(x—_h—xi) (D.5)

where f, = f(x,), and so on. Carrying out the integrations, we obtain
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I,=h(a"f,+afnt1) e*9, (D.6)

where

1

go = _2'(gn + gn+1)7 (D7)
1

A= E(gn ~ gnt1), (D.8)

(D.9)

a =

sin A +i sinA cos A
o T\ T 2 )
and a* is the complex conjugate of a. When A — 0, the integral over the nth subinterval

becomes

In =5 (n + fat1), (.10

which is the trapezoidal rule.

If an even number of subintervals are used, it is also possible to approximate f(z) as
a quadratic function (over any two neighboring subintervals) while leaving g(z) as a linear
function of z. This integration scheme reduces to Simpson’s rule when g(z) is constant.
Both the trapezoidal and the quadratic versions of Filon’s rule have been tried. Because the
quadratic version did not seem to improve the convergence significantly over the simpler

trapezoidal rule, the latter scheme is used in the V072 program.
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APPENDIX E

NUMERICAL SOLUTION OF THE INTEGRAL EQUATION
FOR THE BLADE LOADING

As discussed in Chapter 5, the elemental blade loading function f;(y/b) is the solution
of Eq. (5.8), which with subscript s suppressed in this appendix, becomes

i 1 ”—
eke/o = / oy KT 16y a). (E-1)

This integral equation contains two basic difficulties. They are:

(a) the solution f(z/b) has a singularity of the type (z + b)~%
at the leading edge (2 = —b), and

(b) the kernel function K.(y/b) contains both a Cauchy
singularity (1/y) and a logarithmic singularity at y = 0.

Difficulty (a) is circumvented by introducing the chordwise transformations z/b = cosd

and y/b = cosy. Equation (E.1) then becomes

gikcost /7' Kc(cos® — cos®) F(y) dv, (E.2)
0

where F(1)) = f(cos®) siny. Whereas f(cos) is singular at ¢ = 7, F(3) is not. Thus
the integral equation is solved for F rather than for f itself. Difficulty (b) is overcome by
special treatment of the logarithmically singular part of the kernel.

To solve Eq. (E.2), we apply the method of collocation. That is, the integral on the
right-hand side of Eq. (E.2) is required to equal the forcing function on the left-hand side
at the N points

0 =(m-1/2)1; m=1,---,N. (E.3)

The equations to be solved are then

eil-ccosom — I(Om); m=1,.--- N, (E4)
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where

kig

1(6) = / K.(cos 6 — cos ) F() dib. (E.5)

0

In computing I(8) by evaluating the right-hand side of Eq. (E.5), the points

e =fr/N, £=0,1,---,N, (E.6)

are used.* Having the collocation and integration points interlaced has the dual effect of
avoiding the point ¥ = @, where K, is singular, and of ensuring that the solution obtained

satisfies the Kutta condition, which requires that F' = 0 at the trailing edge.

The logarithmic portion of the kernel function must be isolated for special treatment.

Thus,

K.(y/b) = K1(y/b) + G(y/b) log y/b| (E.7)
and
1(0) = I,(6) + IL(6), (E.8)
where
1) = [ Ka(eosd = cos) Fw) a, (E.9)
0
I.(8) = /G(cosﬂ — cos) log | cos 8 — cos | F(1p) dip. (E.10)
0

The trapezoidal rule suffices to compute I;(f),

N

() =" + BeKu(cosf — cosype) F(ye), (E11)
£=0

* Because F(0) = 0, use of N +1 integration points as called for in Eq. (E.6) introduces
only N unknowns F(¢r/N), for £=1,---,N.
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where Bg = By = 1/2, while By = 1 otherwise; but a special integration rule, devised by
Whitehead (Refs. 20, 21) is required for the logarithmic portion of the kernel. Whitehead's

integration rule is given as

N

I.(80) = Z % B¢ G(cos 8 — cos ) log | cos @ — cos 1| Se(6), (E.12)
£=0

where the By’s are the same weighting functions as defined above, and

21
Se(6) = -—{logZ +2 Z ;B, cos(s0) cos(sz/N)}. (E.13)
s=1

Note that because of the comment in the footnote on page 57, the summations in Eqgs.
(E.11) and (E.12) actually begin at £ = 1 rather than £ = 0. Hence by combining I (9)
and I (), the integral equation is reduced to the following set of algebraic equations for

the unknowns F(¢n/N),

N
gheosl(m=1/Dn/N -3 4 F(en/N), m=1,--,N, (E.14)
£=1
where
Aps = % Be{Kc(x) + G(z)[Se(0,n) — log le]} (E.15)
and
z = cos(0m) — cos(ee). (E.16)

Any standard matrix package which handles equations with complex coefficients can be

used to solve these equations.
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